Distinct centromere-like parS sites on the two chromosomes of Vibrio spp.

نویسندگان

  • Yoshiharu Yamaichi
  • Michael A Fogel
  • Sarah M McLeod
  • Monica P Hui
  • Matthew K Waldor
چکیده

Vibrio cholerae, the cause of cholera, has two circular chromosomes. The parAB genes on each V. cholerae chromosome act to control chromosome segregation in a replicon-specific fashion. The chromosome I (ChrI) parAB genes (parAB1) govern the localization of the origin region of ChrI, while the chromosome II (ChrII) parAB genes (parAB2) control the segregation of ChrII. In addition to ParA and ParB proteins, Par systems require ParB binding sites (parS). Here we identified the parS sites on both V. cholerae chromosomes. We found three clustered origin-proximal ParB1 binding parS1 sites on ChrI. Deletion of these three parS1 sites abrogated yellow fluorescent protein (YFP)-ParB1 focus formation in vivo and resulted in mislocalization of the ChrI origin region. However, as observed in a parA1 mutant, mislocalization of the ChrI origin region in the parS1 mutant did not compromise V. cholerae growth, suggesting that additional (non-Par-related) mechanisms may mediate the partitioning of ChrI. We also identified 10 ParB2 binding parS2 sites, which differed in sequence from parS1. Fluorescent derivatives of ParB1 and ParB2 formed foci only with the cognate parS sequence. parABS2 appears to form a functional partitioning system, as we found that parABS2 was sufficient to stabilize an ordinarily unstable plasmid in Escherichia coli. Most parS2 sites were located within 70 kb of the ChrII origin of replication, but one parS2 site was found in the terminus region of ChrI. In contrast, in other sequenced vibrio species, the distribution of parS1 and parS2 sites was entirely chromosome specific.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromosome Segregation Proteins of Vibrio cholerae as Transcription Regulators

ABSTRACT Bacterial ParA and ParB proteins are best known for their contribution to plasmid and chromosome segregation, but they may also contribute to other cell functions. In segregation, ParA interacts with ParB, which binds to parS centromere-analogous sites. In transcription, plasmid Par proteins can serve as repressors by specifically binding to their own promoters and, additionally, in th...

متن کامل

ParABS systems of the four replicons of Burkholderia cenocepacia: new chromosome centromeres confer partition specificity.

Most bacterial chromosomes carry an analogue of the parABS systems that govern plasmid partition, but their role in chromosome partition is ambiguous. parABS systems might be particularly important for orderly segregation of multipartite genomes, where their role may thus be easier to evaluate. We have characterized parABS systems in Burkholderia cenocepacia, whose genome comprises three chromo...

متن کامل

Recruitment of SMC by ParB-parS Organizes the Origin Region and Promotes Efficient Chromosome Segregation

Organization and segregation of replicated chromosomes are essential processes during cell division in all organisms. Similar to eukaryotes, bacteria possess centromere-like DNA sequences (parS) that cluster at the origin of replication and the structural maintenance of chromosomes (SMC) complexes for faithful chromosome segregation. In Bacillus subtilis, parS sites are bound by the partitionin...

متن کامل

ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres

In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, whi...

متن کامل

Karyological study of apricot, cherry plum and a natural hybrid in the Prunus genus “TANASGOL” (P. cerasifera × P. spp.)

 constriction and staining properties by aceto-iron-hematoxylin were analyzed for Prunus species of apricot (Prunus armeniaca L.), plum (P. cerasifera Ehrh.) and a natural new hybrid known as “TANASGOL” (P. cerasifera × P. spp.). The obtained root tips from germinated seeds at 4–6 °C and young seedlings were pretreated in hydroxyquinoline solution with 50 drops of DMSO. All species had 2n=2x=16...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 14  شماره 

صفحات  -

تاریخ انتشار 2007